Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
or(true, y) → true
or(false, y) → y
and(true, y) → y
and(false, y) → false
size(empty) → 0
size(edge(x, y, i)) → s(size(i))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
reachable(x, y, i) → reach(x, y, 0, i, i)
reach(x, y, c, i, j) → if1(eq(x, y), x, y, c, i, j)
if1(true, x, y, c, i, j) → true
if1(false, x, y, c, i, j) → if2(le(c, size(j)), x, y, c, i, j)
if2(false, x, y, c, i, j) → false
if2(true, x, y, c, empty, j) → false
if2(true, x, y, c, edge(u, v, i), j) → or(if2(true, x, y, c, i, j), and(eq(x, u), reach(v, y, s(c), j, j)))

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
or(true, y) → true
or(false, y) → y
and(true, y) → y
and(false, y) → false
size(empty) → 0
size(edge(x, y, i)) → s(size(i))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
reachable(x, y, i) → reach(x, y, 0, i, i)
reach(x, y, c, i, j) → if1(eq(x, y), x, y, c, i, j)
if1(true, x, y, c, i, j) → true
if1(false, x, y, c, i, j) → if2(le(c, size(j)), x, y, c, i, j)
if2(false, x, y, c, i, j) → false
if2(true, x, y, c, empty, j) → false
if2(true, x, y, c, edge(u, v, i), j) → or(if2(true, x, y, c, i, j), and(eq(x, u), reach(v, y, s(c), j, j)))

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

IF1(false, x, y, c, i, j) → SIZE(j)
REACH(x, y, c, i, j) → EQ(x, y)
IF1(false, x, y, c, i, j) → LE(c, size(j))
LE(s(x), s(y)) → LE(x, y)
IF1(false, x, y, c, i, j) → IF2(le(c, size(j)), x, y, c, i, j)
EQ(s(x), s(y)) → EQ(x, y)
REACHABLE(x, y, i) → REACH(x, y, 0, i, i)
IF2(true, x, y, c, edge(u, v, i), j) → IF2(true, x, y, c, i, j)
IF2(true, x, y, c, edge(u, v, i), j) → OR(if2(true, x, y, c, i, j), and(eq(x, u), reach(v, y, s(c), j, j)))
IF2(true, x, y, c, edge(u, v, i), j) → AND(eq(x, u), reach(v, y, s(c), j, j))
IF2(true, x, y, c, edge(u, v, i), j) → EQ(x, u)
REACH(x, y, c, i, j) → IF1(eq(x, y), x, y, c, i, j)
IF2(true, x, y, c, edge(u, v, i), j) → REACH(v, y, s(c), j, j)
SIZE(edge(x, y, i)) → SIZE(i)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
or(true, y) → true
or(false, y) → y
and(true, y) → y
and(false, y) → false
size(empty) → 0
size(edge(x, y, i)) → s(size(i))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
reachable(x, y, i) → reach(x, y, 0, i, i)
reach(x, y, c, i, j) → if1(eq(x, y), x, y, c, i, j)
if1(true, x, y, c, i, j) → true
if1(false, x, y, c, i, j) → if2(le(c, size(j)), x, y, c, i, j)
if2(false, x, y, c, i, j) → false
if2(true, x, y, c, empty, j) → false
if2(true, x, y, c, edge(u, v, i), j) → or(if2(true, x, y, c, i, j), and(eq(x, u), reach(v, y, s(c), j, j)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

IF1(false, x, y, c, i, j) → SIZE(j)
REACH(x, y, c, i, j) → EQ(x, y)
IF1(false, x, y, c, i, j) → LE(c, size(j))
LE(s(x), s(y)) → LE(x, y)
IF1(false, x, y, c, i, j) → IF2(le(c, size(j)), x, y, c, i, j)
EQ(s(x), s(y)) → EQ(x, y)
REACHABLE(x, y, i) → REACH(x, y, 0, i, i)
IF2(true, x, y, c, edge(u, v, i), j) → IF2(true, x, y, c, i, j)
IF2(true, x, y, c, edge(u, v, i), j) → OR(if2(true, x, y, c, i, j), and(eq(x, u), reach(v, y, s(c), j, j)))
IF2(true, x, y, c, edge(u, v, i), j) → AND(eq(x, u), reach(v, y, s(c), j, j))
IF2(true, x, y, c, edge(u, v, i), j) → EQ(x, u)
REACH(x, y, c, i, j) → IF1(eq(x, y), x, y, c, i, j)
IF2(true, x, y, c, edge(u, v, i), j) → REACH(v, y, s(c), j, j)
SIZE(edge(x, y, i)) → SIZE(i)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
or(true, y) → true
or(false, y) → y
and(true, y) → y
and(false, y) → false
size(empty) → 0
size(edge(x, y, i)) → s(size(i))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
reachable(x, y, i) → reach(x, y, 0, i, i)
reach(x, y, c, i, j) → if1(eq(x, y), x, y, c, i, j)
if1(true, x, y, c, i, j) → true
if1(false, x, y, c, i, j) → if2(le(c, size(j)), x, y, c, i, j)
if2(false, x, y, c, i, j) → false
if2(true, x, y, c, empty, j) → false
if2(true, x, y, c, edge(u, v, i), j) → or(if2(true, x, y, c, i, j), and(eq(x, u), reach(v, y, s(c), j, j)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 4 SCCs with 7 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LE(s(x), s(y)) → LE(x, y)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
or(true, y) → true
or(false, y) → y
and(true, y) → y
and(false, y) → false
size(empty) → 0
size(edge(x, y, i)) → s(size(i))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
reachable(x, y, i) → reach(x, y, 0, i, i)
reach(x, y, c, i, j) → if1(eq(x, y), x, y, c, i, j)
if1(true, x, y, c, i, j) → true
if1(false, x, y, c, i, j) → if2(le(c, size(j)), x, y, c, i, j)
if2(false, x, y, c, i, j) → false
if2(true, x, y, c, empty, j) → false
if2(true, x, y, c, edge(u, v, i), j) → or(if2(true, x, y, c, i, j), and(eq(x, u), reach(v, y, s(c), j, j)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


LE(s(x), s(y)) → LE(x, y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(s(x1)) = 1/2 + (13/4)x_1   
POL(LE(x1, x2)) = (15/4)x_2   
The value of delta used in the strict ordering is 15/8.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
or(true, y) → true
or(false, y) → y
and(true, y) → y
and(false, y) → false
size(empty) → 0
size(edge(x, y, i)) → s(size(i))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
reachable(x, y, i) → reach(x, y, 0, i, i)
reach(x, y, c, i, j) → if1(eq(x, y), x, y, c, i, j)
if1(true, x, y, c, i, j) → true
if1(false, x, y, c, i, j) → if2(le(c, size(j)), x, y, c, i, j)
if2(false, x, y, c, i, j) → false
if2(true, x, y, c, empty, j) → false
if2(true, x, y, c, edge(u, v, i), j) → or(if2(true, x, y, c, i, j), and(eq(x, u), reach(v, y, s(c), j, j)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

SIZE(edge(x, y, i)) → SIZE(i)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
or(true, y) → true
or(false, y) → y
and(true, y) → y
and(false, y) → false
size(empty) → 0
size(edge(x, y, i)) → s(size(i))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
reachable(x, y, i) → reach(x, y, 0, i, i)
reach(x, y, c, i, j) → if1(eq(x, y), x, y, c, i, j)
if1(true, x, y, c, i, j) → true
if1(false, x, y, c, i, j) → if2(le(c, size(j)), x, y, c, i, j)
if2(false, x, y, c, i, j) → false
if2(true, x, y, c, empty, j) → false
if2(true, x, y, c, edge(u, v, i), j) → or(if2(true, x, y, c, i, j), and(eq(x, u), reach(v, y, s(c), j, j)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


SIZE(edge(x, y, i)) → SIZE(i)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(SIZE(x1)) = (2)x_1   
POL(edge(x1, x2, x3)) = 1/4 + (7/2)x_3   
The value of delta used in the strict ordering is 1/2.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
or(true, y) → true
or(false, y) → y
and(true, y) → y
and(false, y) → false
size(empty) → 0
size(edge(x, y, i)) → s(size(i))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
reachable(x, y, i) → reach(x, y, 0, i, i)
reach(x, y, c, i, j) → if1(eq(x, y), x, y, c, i, j)
if1(true, x, y, c, i, j) → true
if1(false, x, y, c, i, j) → if2(le(c, size(j)), x, y, c, i, j)
if2(false, x, y, c, i, j) → false
if2(true, x, y, c, empty, j) → false
if2(true, x, y, c, edge(u, v, i), j) → or(if2(true, x, y, c, i, j), and(eq(x, u), reach(v, y, s(c), j, j)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EQ(s(x), s(y)) → EQ(x, y)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
or(true, y) → true
or(false, y) → y
and(true, y) → y
and(false, y) → false
size(empty) → 0
size(edge(x, y, i)) → s(size(i))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
reachable(x, y, i) → reach(x, y, 0, i, i)
reach(x, y, c, i, j) → if1(eq(x, y), x, y, c, i, j)
if1(true, x, y, c, i, j) → true
if1(false, x, y, c, i, j) → if2(le(c, size(j)), x, y, c, i, j)
if2(false, x, y, c, i, j) → false
if2(true, x, y, c, empty, j) → false
if2(true, x, y, c, edge(u, v, i), j) → or(if2(true, x, y, c, i, j), and(eq(x, u), reach(v, y, s(c), j, j)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


EQ(s(x), s(y)) → EQ(x, y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(EQ(x1, x2)) = (15/4)x_2   
POL(s(x1)) = 1/2 + (13/4)x_1   
The value of delta used in the strict ordering is 15/8.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
or(true, y) → true
or(false, y) → y
and(true, y) → y
and(false, y) → false
size(empty) → 0
size(edge(x, y, i)) → s(size(i))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
reachable(x, y, i) → reach(x, y, 0, i, i)
reach(x, y, c, i, j) → if1(eq(x, y), x, y, c, i, j)
if1(true, x, y, c, i, j) → true
if1(false, x, y, c, i, j) → if2(le(c, size(j)), x, y, c, i, j)
if2(false, x, y, c, i, j) → false
if2(true, x, y, c, empty, j) → false
if2(true, x, y, c, edge(u, v, i), j) → or(if2(true, x, y, c, i, j), and(eq(x, u), reach(v, y, s(c), j, j)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP

Q DP problem:
The TRS P consists of the following rules:

IF1(false, x, y, c, i, j) → IF2(le(c, size(j)), x, y, c, i, j)
IF2(true, x, y, c, edge(u, v, i), j) → IF2(true, x, y, c, i, j)
REACH(x, y, c, i, j) → IF1(eq(x, y), x, y, c, i, j)
IF2(true, x, y, c, edge(u, v, i), j) → REACH(v, y, s(c), j, j)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
or(true, y) → true
or(false, y) → y
and(true, y) → y
and(false, y) → false
size(empty) → 0
size(edge(x, y, i)) → s(size(i))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
reachable(x, y, i) → reach(x, y, 0, i, i)
reach(x, y, c, i, j) → if1(eq(x, y), x, y, c, i, j)
if1(true, x, y, c, i, j) → true
if1(false, x, y, c, i, j) → if2(le(c, size(j)), x, y, c, i, j)
if2(false, x, y, c, i, j) → false
if2(true, x, y, c, empty, j) → false
if2(true, x, y, c, edge(u, v, i), j) → or(if2(true, x, y, c, i, j), and(eq(x, u), reach(v, y, s(c), j, j)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.